
TODO

Complete these notes• 
See below question about Solver::reset• 
See Paul's latest email - is that method called by code I'm looking at?• 
Ask Paul how it is that the same solution won't be obtained even if it's a possible one• 
Talk to Mike about how he might incorporate what DynamicEUROPA did into current architecture• 
Get good example that exercises various capabilities of system so we can test anything we implement• 
Overview of existing research (ask Paul and David if they know of any, for starters). Javier is doing this• 
Move the existing DynamicEuropa implementation over (just move the code over - should be easy, ONCE
I understand the code!)

• 

Try to implement a more generic or better version for the general case• 

DynamicEUROPA Approach

Described here to best of my understanding. See also their MAPGEN paper from ICAPS 05 (attached).

Their approach is three-pronged:

NDDL Changes: each predicate has a 'reftime' temporal variable that is used to store a reference schedule
that can then be accessed by disparate parts of the code.

1. 

Code wrapped around core EUROPA: fixViolations etc (TODO: describe)2. 
Solver changes: They use the built-in solver but:

Threats handled with custom PriorityFlawHandler (registered as PriorityMinPerturb) which uses
MinPerturb? decision point to resolve threats. This decision point compares potential added
constraints (precedences) and orders based on how far involved tokens would have to move from
reference schedule.

1. 

Open conditions handled with NearestMerge? decision point (only for some of their applications, it
appears - perhaps just BedRest??), which uses reference times to determine order of merges to
suggest (for each choice, it looks at how far the token would have to move from the reference time,
and prefers small moves).

2. 

Unbound (temporal) variables are left unbound (ie filtered by SolverConfig?.xml), so that the
above code (fixViolations etc) can bound them according to the reference schedule.

3. 

3. 

Temporal propagator specialization (getMinPerturbTimes) ??4. 

Other things they've done are intertwined with the above:

Augment nddl predicates with 'scheduled' boolean and wrap all predicate constraints and subgoals within
'if(scheduled==true)' guard to be able to solve over-subscribed problems (ie activities can be left
unscheduled to get a feasible plan)

• 

A 'solve' boolean is similarly used; not sure what for.• 

Questions

How does Dynamic EUROPA implementation work:
Do they only consider temporal variables?♦ 
What about removing/adding tokens to the plan? Do they ever do it?♦ 

• 

Which do we want:• 

TODO 1



Ability to continue where we left off (ie everything still in the database etc)?♦ 
Start from scratch (ie solve a new problem given some stored info about our previous solution)?♦ 

Does plan database record time stamps for data (ie can you recreate search by looking at it)?• 
Does existing chronological search handle inconsistencies (or just the underlying structures)?• 

Example Perturbations

A variable range is further restricted (temporal variables are one example).• 
A constraint is updated or added• 
Goal is changed• 
Initial state changes• 
Resource information is updated• 
Indirect results of perturbation could be:

Don't need a token anymore♦ 
Merge not possible anymore♦ 
New merge is possible♦ 
Optional goal now reachable (or now no longer reachable)♦ 

• 

Brainstorming Notes

I don't think we'll have access to any of the Solver pieces (for example the search tree), since we'll want this
to work with built-in solvers too (?)

• 

There's some similarity to what Mike was recently talking about regarding saving all transactions so that
SACE can start up again with previous plan!

• 

Start with easy steps, perhaps:
Port over the DynamicEUROPA stuff, or♦ 
Use my basic approach (record everything, then solve from scratch?)♦ 

• 

Note that a min perturb solver subsumes a solver that resolves conflicts - perhaps focus on the latter first
(should be easier, but isn't obvious how to do even that).

• 

Generic minperturb involves three pieces (how does this generalize what Dynamic EUROPA does?):
Unbound variables should be easy - use reference time to set as close as possible♦ 
What to do about threats?♦ 
Open condidtions - perhaps also just do what was done before♦ 

• 

QUESTION: a) Unspecify everything but record, or b) local planning approach. In other words, a) Use
built-in solver or b) write new solver.

• 

Undoing decisions will result in new activity ids next time, so we can use them to store reference data (and
if variable contains preference, it would be lost!)

• 

As DynamicEUROPA guys do, it is possible to restart the solver, without restarting the current state (reset
eliminates decision stackv! TODO: Is this true, or does eliminating stack undo those things??? SOS

• 

How to distinguish between original and planner-imposed constraints?• 
Why not simply take advantage of the ability to be in an inconsistent state and continue whatever search
we're doing? Either start in the previous state, or just load the previous state in, if necessary.

• 

A modification of existing search where:
Each step does something that matches the final state in the old situation. If it can't, do nothing and
branch on a different variable (ie will make everything how it was as much as possible, before
starting to set things as close as possible).

♦ 

Variable issues (what value to choose) are different than object issues (whether to activate, merge,
etc)

♦ 

• 

Questions 2



Save a backup copy of current plan database. Then start from scratch. Implement something like existing
chronological search:

At decision point, make choices to mimic what's in saved database♦ 
If that makes things inconsistent, skip handling that flaw for now (ie recreate as much as possible
that is identical)

♦ 

Once we get to a point where we must deviate in some way from previous plan, just start the usual
search (or any other algorithm) from there

♦ 

• 

Brainstorming Notes 3


	tmpFvCic2tracpdf

